Refine your search:     
Report No.
 - 
Search Results: Records 1-2 displayed on this page of 2
  • 1

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Oral presentation

Influence of temperature histories during reactor startup periods on IASCC susceptibility of austenitic stainless steel irradiated with neutrons

Kasahara, Shigeki; Chimi, Yasuhiro; Kitsunai, Yuji*; Koshiishi, Masato*

no journal, , 

According to existing data of slow strain rate tensile (SSRT) test under high temperature water conditions, which simulated BWR primary coolant environment, low carbon stainless steel, which was irradiated with neutrons up to about 3 dpa in BWR core, shows susceptibility of Irradiation associated stress corrosion cracking (IASCC). On the other hand, the stainless steel irradiated by using the JMTR did not show IASCC susceptibility, regardless of neutron fluence. To investigate this different result about IASCC susceptibility, the JMTR operated to simulate temperature history at start-up of BWR, and a tensile specimen of SUS316L was irradiated up to about 3 dpa under the condition. After that, the specimen was examined by SSRT test to evaluate IASCC susceptibility. The result of fracture surface observation after the SSRT test indicated that the specimen fractured by Inter-granular mode and was evaluated to be susceptible to IASCC. In the comparison of the data of IASCC sensitivity by the JMTR irradiated materials, which did not show IASCC susceptibility, the difference of them was suggested to attribute to different temperature histories at the start of irradiation. The relationship between IASCC susceptibility and the parameters obtained from tensile tests was discussed, in consideration of the difference of the tensile parameters which are suffered from the irradiation condition under the different temperature history during the start period of the irradiation.

Oral presentation

Modeling study of irradiated materials using molecular dynamics; Evolution using numerical studies of mechanical sysrtems

Suzudo, Tomoaki

no journal, , 

In nuclear metallic materials, bubbles and dislocation loops are formed through irradiation, and phase separation occurs due to thermal aging. By reproducing such changes by computer simulation, it is expected that the atomistic understanding of phenomena will be promoted and the prediction accuracy of material deterioration will be improved. With the recent development of computer hardware, the expectation of the role of computational science in the field of irradiation materials is increasing. Especially the range of dynamic simulation such as deformation and destruction which can be done by molecular dynamics increased. This presentation thinks about what kind of ripple effect is expected.

2 (Records 1-2 displayed on this page)
  • 1